SITE ASSESSMENT REPORT FOR THE SMEAD AVENUE DRUM SITE TOLEDO, LUCAS COUNTY, OHIO **NPL STATUS: NON-NPL** #### Prepared for: #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Emergency Response Branch Region V 25089 Center Ridge Road Westlake, OH 44145 #### Prepared by: #### WESTON SOLUTIONS, INC. 6779 Engle Road Suite I Middleburg Heights, OH 44130 Date Prepared: August 1, 2012 TDD No.: S05-0001-1205-008 Document Control No.: 1851-2A-AWFL Contract No.: EP-S5-06-04 START Project Manager: TJ McFarland Telephone No.: (440) 202-2802 U.S. EPA On-Scene Coordinator: Jon Gulch #### SITE ASSESSMENT REPORT FOR THE SMEAD AVENUE DRUM SITE TOLEDO, LUCAS COUNTY, OHIO **NPL STATUS: NON-NPL** #### Prepared for: #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Emergency Response Branch Region V 25089 Center Ridge Road Westlake, OH 44145 Prepared by: #### WESTON SOLUTIONS, INC. 6779 Engle Road Suite I Middleburg Heights, OH 44130 August 1, 2012 | Prepared by: _ | Dustin Batis |
Date: | 8/1/2012 | |----------------|---|-----------|----------| | | Dustin Bates
START Project Scientist | | | | Reviewed by: _ | of smith | Date: | 8/1/2012 | | | TJ McFarland
START Project Manager | | | ### **TABLE OF CONTENTS** | 1. | INT | RODUCTION | 1 | |----|------|--|---| | 2. | SITE | E BACKGROUND | 1 | | | 2.1 | SITE DESCRIPTION | 2 | | | 2.2 | SITE HISTORY | | | 3. | SITE | E ASSESSMENT ACTIVITIES | 2 | | | 3.1 | CONTAINER INVENTORY | 3 | | | 3.2 | DRUM SAMPLING | | | 4. | ANA | LYTICAL RESULTS | 5 | | 5. | | EATS TO HUMAN HEALTH AND THE ENVIRONMENT | | | 6 | | ICLUSIONS | | #### **LIST OF FIGURES** Figure 1 Site Location MapFigure 2 Site Features Map Figure 3 Inventory and Sampling Areas #### **LIST OF TABLES** Table 1 Drum Sample Analytical Results #### **LIST OF APPENDICES** Appendix A Photographic Documentation Appendix B Laboratory Analytical Data and Validation Report #### **ABBREVIATIONS AND ACRONYMS** CFR Code of Federal Regulations EPI Environmental Purification Industries ERB Emergency Response Branch mg/L Milligram per liter mm/sec Millimeter per second NCP National Oil and Hazardous Substances Pollution Contingency Plan OSC On-Scene Coordinator PID Photoionization detector PPE Personal protective equipment ppm Part per million START Superfund Technical Assessment and Response Team SU Standard unit SVOC Semivolatile organic compound TCLP Toxicity Characteristic Leaching Procedure TDD Technical Direction Document U.S. EPA United States Environmental Protection Agency VOC Volatile organic compound WESTON Weston Solutions, Inc. > Date: August 1, 2012 Page: 1 1. INTRODUCTION The United States Environmental Protection Agency (U.S. EPA) Region 5 Emergency Response Branch (ERB) tasked the Weston Solutions, Inc. (WESTON®), Superfund Technical Assessment and Response Team (START) to assist with a removal site assessment at the Smead Avenue Drum site in Toledo, Lucas County, Ohio (the Site) (Figure 1). Under Technical Direction Document (TDD) No. S05-0001-1205-008, WESTON START was tasked to perform the following activities: • Create an inventory of abandoned wastes in drums • Collect samples for laboratory analysis from a selection of drums, including both open and closed drums • Document and summarize the potential for imminent and substantial threats to the public health or welfare of the United States or the environment On May 24, 2012, WESTON START personnel mobilized to the Site and conducted site assessment tasks under the direction of On-Scene Coordinator (OSC) Jon Gulch. This site assessment report is organized into the following sections: • Section 1, Introduction – Briefly describes the objectives of the site assessment and the site assessment report organization • Section 2, Site Background – Details the Site description and history • Section 3, Site Assessment Activities – Discusses methods used and activities conducted during the site assessment • Section 4, Analytical Results – Discusses analytical results for samples collected during the site assessment • Section 5, Threats to Human Health and the Environment – Identifies conditions at the Site that warrant a removal action under the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) **Section 6, Summary** – Summarizes the removal site assessment findings and lists potential removal action activities and conditions that may warrant additional evaluation 2. SITE BACKGROUND This section discusses the Site description and history. > Date: August 1, 2012 Page: 2 2.1 SITE DESCRIPTION The Site is located in an urban area at 2234 Smead Avenue in Toledo, Lucas County, Ohio (Figure 1). The Site coordinates are 41.6648 North latitude and 83.5747 West longitude. The Site currently is abandoned and secured, and no utilities serve the portions of the building addressed as part of the removal site assessment. The Site consists of a single, large warehouse building where more than 5,000 steel drums are stored. Figure 2 shows the Site features. Separate buildings are attached to the northeast and southwest sides of the Site building. The names and business types of the adjoining buildings are unknown. The Site building shows severe signs of weathering and aging, making several areas inaccessible due to safety concerns. Portions of the roof and ceiling have collapsed and currently are propped up with temporary supports or supported by stacked drums. Some portions of the roof are open to the outside, allowing rain and snow to enter. During the site assessment, standing water was present in some sections of the building. Several fallen drums have ruptured and spilled their contents onto the floor in the building. The Site and building are surrounded on all sides by commercial and residential developed land. The closet residence is located approximately 100 feet east of the Site. 2.2 SITE HISTORY Environmental Purification Industries (EPI) formerly used the Site building as a storage warehouse for automotive paint collected from overspray during production. Before being warehoused in the Site building, the waste paint was baked in an oven at a separate facility. A certain percentage of the used paint was recycled into new automotive paint. For unknown reasons, the company abandoned the warehouse and left the drum contents inside. 3. SITE ASSESSMENT ACTIVITIES Site assessment activities were conducted on May 24, 2012. The OSC and three WESTON START members conducted a Site walk-through, documented and inventoried the drum I:\WO\START3\1851\44607RPT.DOCX 1851-2A-AWFL This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express written permission of U.S. EPA. Date: August 1, 2012 Page: 3 containers and general Site conditions, and sampled various open and sealed drums. On May 25, 2012, a courier delivered all samples to the designated laboratory for analysis. The site assessment tasks were designed to document the potential for imminent and substantial threats to the public health or welfare of the United States or the environment based on guidance in the NCP, Title 40 of the Code of Federal Regulations (CFR), Part 300.415(b)(2). In particular, the site assessment activities focused on characterizing wastes stored in abandoned drums and identifying potential sources of soil and water contamination. The following subsections describe the container inventory and drum sampling activities. Appendix A provides photographic documentation of the site assessment activities and Site conditions. 3.1 CONTAINER INVENTORY The drum inventory at the Site was documented on handwritten log sheets during the site assessment, including container types, markings, labels, condition, and contents. As shown in Figure 3, the warehouse building was divided into Areas A through D to facilitate the container inventory. The exact number of drums at the Site is unknown because certain areas of the building were inaccessible due to safety concerns and the current placement of stacked drums. Approximately 5,134 drums are estimated to be present at the Site. The drums were arranged four per pallet and stacked three pallets high throughout the building. The condition of the drums varied from poor to fair, with most showing signs of heavy weathering and rust. Several drums were leaking their contents onto the floor of the building. The drums showed some consistent labeling. Many paper labels contained the nomenclature "EPI-MER." with various lot numbers and EPI's address of 2111 Champlain Street in Toledo, OH 43611. Many drum labels had been painted over and were not legible. Other painted-over labels identified "Non-Hazardous Waste," "Hazardous Waste," and "Flammable Liquid." Not all labels could be read because of inaccessibility issues. I:\WO\START3\1851\44607RPT.DOCX 1851-2A-AWFL This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express written permission of U.S. EPA. Date: August 1, 2012 Page: 4 Of the approximately 5,134 drums within the building, about 50 had no lids. The rest of the accessible drums were closed and sealed. Most drums were not accessible, and their condition could not be determined. The contents in the observed open drums seemed consistent with paint in various stages of solidification. Some drums contained 3 to 6 inches of liquid atop the solidified paint, but it is unknown if the liquid is rainwater or had separated out from the paint. 3.2 DRUM SAMPLING Drum sampling included both open and closed drums. Open drum sampling was performed in Level D personal protective equipment (PPE), including safety glasses and rubber gloves. Nine samples were collected from open drums. Attempts were made to collect both liquid and solid samples that showed color and textural differences. Six liquid samples (including
duplicates) were collected using drum thieves, and six solid samples (including duplicates) were collected using rubber gloves. The OSC and three WESTON START personnel donned Level B PPE to collect closed drum samples. Three closed, 55-gallon drums were sampled based on label information and accessibility. The closed drums were opened using a brass bung wrench, and the bung of each drum was closed after sample collection. Two of the drums contained solidified material, and no samples were collected. Closed drum D011 contained a thick gray liquid, and a sample was collected. The table below lists the headspace photoionization detector (PID) reading and sample identification number for each sample collected. I:\WO\START3\1851\44607RPT.DOCX 1851-2A-AWFL This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express written permission of U.S. EPA. Page: 5 #### **Drum Sample PID Headspace Readings and Sample Identification Numbers** | Drum | | | PID Headspace | | | |------|------------------|----------------------|---------------|--------|---------------| | ID | Description | Labeling | Reading (ppm) | Matrix | Sample ID No. | | D001 | Steel, 55-gallon | None | NA | Solid | SA-D-D001 | | D002 | Steel, 55-gallon | None | 0.4 | Solid | SA-C-D002 | | D003 | Steel, 55-gallon | None | 0.6 | Liquid | SA-C-D003 | | D004 | Steel, 55-gallon | None | NA | Solid | SA-C-D004 | | D005 | Steel, 55-gallon | None | NA | Solid | SA-C-D005 | | D006 | Steel, 55-gallon | Emulsion | 0.0 | Liquid | SA-C-D006 | | D007 | Steel, 55-gallon | None | 0.2 | Liquid | SA-C-D007 | | D008 | Steel, 55-gallon | None | 0.0 | Solid | SA-B-D008 | | D009 | Steel, 55-gallon | Non-Hazardous, "04 | 0.0 | Liquid | SA-A-D009 | | | | rework 7/25/98, 75%" | | | | | D010 | Steel, 55-gallon | None | 8.4 | Solid | None | | D011 | Steel, 55-gallon | None | 0.0 | Liquid | SA-C-D011 | | D012 | Steel, 55-gallon | None | 2.1 | Solid | None | Notes: ID = Identification PID = Photoionization detector ppm = Part per million Each drum sample was transferred from the dedicated sampler into labeled, laboratory-provided sample containers. Drum samples were stored in a cooler on ice for delivery to the designated laboratory. The analyses requested for each solid sample were ignitability, corrosivity (pH), Toxicity Characteristic Leaching Procedure (TCLP) metals, TCLP volatile organic compounds (VOC), and TCLP semivolatile organic compounds (SVOC). The analyses requested for each liquid sample were flashpoint, corrosivity (pH), TCLP metals, TCLP VOCs, and TCLP SVOCs. #### 4. ANALYTICAL RESULTS On May 25, 2012, all samples were delivered under chain of custody to the designated laboratory, EA Group in Mentor, Ohio. Preliminary analytical results were transmitted electronically by the laboratory and forwarded to the OSC on June 7, 2012. The final analytical report was transmitted to a WESTON START chemist on June 7, 2012, for review and validation. All laboratory results were deemed suitable for use. **Appendix B** provides the laboratory analytical data and validation report for the samples. Flashpoint, pH, TCLP metals, TCLP VOC, and TCLP SVOC analytical results were compared to the Characteristics of Hazardous Waste in 40 CFR Part 261, Subpart C. **Table 1** summarizes the drum sample analytical results. None of the drum sample results exceeded the TCLP regulatory limits or the limits for defining characteristic hazardous waste as either ignitable or corrosive. Applicable standards for each analyte are listed in parentheses after the sample results summarized below. #### **SA-D-D001** Ignitability: Negative pH: 8.5 standard units (SU) (<2.0 or >12.5 SUs) TCLP Metals: 1.16 milligrams per liter (mg/L) barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-C-D002** Ignitability: Negative pH: 9.2 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.281 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-C-D003** Flashpoint: >200 degrees Fahrenheit (<140 degrees Fahrenheit) pH: 9 SUs (<2.0 or >12.5 SUs) TCLP Metals: 5.24 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: 0.053 mg/L pyridine (5 mg/L) #### **SA-C-D004** Ignitability: <2.2 millimeters per second (mm/sec) pH: 8.1 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.402 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected Date: August 1, 2012 Page: 7 #### **SA-C-D005** Ignitability: <2.2 mm/sec pH: 8.9 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.195 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-C-D006** Flashpoint: >200 degrees Fahrenheit (<140 degrees Fahrenheit) pH: 7.5 SUs (<2.0 or >12.5 SUs) TCLP Metals: Not detected TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-C-D007** Flashpoint: >200 degrees Fahrenheit (<140 degrees Fahrenheit) pH: 10 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.893 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-B-D008** Ignitability: <2.2 mm/sec pH: 7.5 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.796 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-A-D009** Flashpoint: >200 degrees Fahrenheit (<140 degrees Fahrenheit) pH: 9 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.163 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### **SA-C-D011** Ignitability: Negative pH: 7.6 SUs (<2.0 or >12.5 SUs) TCLP Metals: 0.111 mg/L barium (100 mg/L) TCLP VOCs: Not detected TCLP SVOCs: Not detected #### 5. THREATS TO HUMAN HEALTH AND THE ENVIRONMENT Factors to be considered in determining the appropriateness of a potential removal action at a site are delineated in the NCP at 40 CFR 300.415(b)(2). A summary of the factors applicable to the Site is presented below. ## • Actual or potential exposure of nearby human populations, animals, or the food chain to hazardous substances or pollutants or contaminants Analytical results for drum samples collected during the site assessment indicated no wastes exceeding the TCLP regulatory limits or the limits for defining characteristic hazardous wastes as either corrosive or ignitable. During the site assessment, an estimated 5,134 drums were warehoused in the Site building. No consistent labeling appeared on the drums, however hazardous waste labels were present on some of the inaccessible drums and had been painted or covered over. Many containers were in poor condition and exposed to the elements, and most were inaccessible for inventorying or sampling. Several fallen and punctured drums showing signs of release were observed at the Site. Approximately 50 drums were accessible for sampling, leaving over 5,000 drums at the Site with unknown contents. Due to the possibility of hazardous waste being stored in the inaccessible drums, there is a potential risk to nearby businesses and residents in the event of a release. #### • Actual or potential contamination of drinking water supplies or sensitive ecosystems Although no characteristic hazardous wastes were identified at the Site based on site assessment laboratory analytical results, the collapse of much of the on-site building roof allowed water to enter and accumulate in the building. Surface water runoff from the Site flows directly into storm sewers and surrounding areas. Because many drums contain unknown contents and are continually exposed to the elements, the drums will continue to deteriorate and could eventually release their contents to storm sewers, and potentially reach surface water. ## • Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released During the site assessment, several areas inside the Site building contained several inches of standing water from deteriorating roofs. Some drums containing unidentified wastes were located in flooded areas of the building. Infiltration of rain water and snow melt increases the likelihood of a release of potentially hazardous substances from the drums. #### • Threat of fire or explosion Due to the large amount of drums with unknown contents in the Site building, a fire or explosion in the building could result in a release of potentially hazardous substances at or from the Site. In addition, potentially flammable or explosive materials could be Date: August 1, 2012 Page: 9 stored in the inaccessible drums, which would increase the threat of fire or explosion within the Site building. #### 6. CONCLUSIONS The tasks completed as part of this site assessment were designed to document the potential for imminent and substantial threats to the public health or welfare of the United States or the environment posed by uncontrolled, abandoned wastes at the Site. Based on an inspection of the Site, drum container inventory, and sampling results, the conclusions summarized below can be drawn. Further evaluation beyond the scope of this site assessment may be needed in some cases to determine the current status or actual threats of release. - An on-site drum inventory estimates 5,134 drums warehoused in the Site building. This estimate is only an approximation. Many areas of the building were inaccessible due to safety concerns resulting from the structural dilapidation of the building and the placement of stacked drums. - Drum sampling was limited to approximately 50 accessible drums. The analytical results show that the sampled drums contain no characteristic hazardous wastes. Based on information regarding past operations at the Site, it is believed that the inaccessible drums contain similar contents as the sampled drums. However, the inaccessible drums may contain other potentially hazardous contents. - The threat of structural collapse of the roof, water infiltration, and fire within the building pose potential future environmental risks. ## **FIGURES** ## **TABLES** # APPENDIX A PHOTOGRAPHIC DOCUMENTATION **Photograph No.:** 1 **Date:** 5/23/12 **Direction:**
South **Photographer:** Ryan Green Subject: Loading docks to Site building at north end of the Site Site: Smead Avenue Drum Site Photograph No.: 2 Date: 5/23/12 **Direction:** Southeast **Photographer:** Ryan Green Subject: Area A containing numerous stacked drums along southeast wall **Photograph No.:** 3 **Date:** 5/23/12 **Direction:** Southeast **Photographer:** Ryan Green Site: Smead Avenue Drum Site Photograph No.: 4 Date: 5/23/12 **Direction:** Southwest **Photographer:** Ryan Green Subject: Partially collapsed ceiling over stacked drums in Area B **Photograph No.:** 5 **Date:** 5/23/12 **Direction:** Southwest **Photographer:** Ryan Green Subject: Haphazardly stacked drums in Area B Site: Smead Avenue Drum Site Photograph No.: 6 Date: 5/23/12 **Direction:** Northwest **Photographer:** Ryan Green Subject: Fallen drums with contents spilled onto floor in Area B **Photograph No.:** 7 **Direction:** West Subject: Haphazardly stacked drums in Area B **Date:** 5/23/12 Photographer: Ryan Green Site: Smead Avenue Drum Site Photograph No.: 8 Date: 5/23/12 **Direction:** Southwest **Photographer:** Ryan Green **Subject:** Area C showing numerous stacked drums Photograph No.: 9 Date: 5/23/12 **Direction:** Southeast **Photographer:** Ryan Green **Subject:** Partially collapsed roof over stacked drums in Area C; drums are supporting the weight of the roof # APPENDIX B LABORATORY ANALYTICAL DATA AND VALIDATION REPORT Table 1 Drum Sample Analytical Results Smead Avenue Drum Site Toledo, Lucas County, Ohio | Parameter Method | | | | | Sample ID No. | | | | | | | | | | | | |--|----------------------------------|-------------|--------|------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Parameter Method Valt Solid | | | | | | | SA-C-D002 | | | | | SA-C-D006 | | | | | | Characterisis | | Analytical | | Regulatory | SA-D-D001 | SA-C-D002 | (Dup) | SA-C-D003 | SA-C-D004 | SA-C-D005 | SA-C-D006 | (Dup) | SA-C-D007 | SA-B-D008 | SA-A-D009 | SA-C-D011 | | Particularity SW846-10108 TF 2-140 NA NA NA NA NA NA 2-22 -2-22 NA NA NA 2-22 NA NA NA 2-20 2-20 NA NA 2-20 | Parameter | Method | Unit | Limit | Solid | Solid | Solid | Liquid | Solid | Solid | Liquid | Liquid | Liquid | Solid | Liquid | Liquid | | Flashpoint SW846-9100 F | Characteristic | | | | | | | | | | | | | | | | | Cornesing (eff) SW446-90408 pH SUs 2.12.5 8.5 9.2 9 9 8.1 8.9 7.5 | Ignitability | SW846-1030M | mm/sec | NA | Negative | Negative | Negative | NA | <2.2 | <2.2 | NA | NA | NA | <2.2 | NA | Negative | | Name | Flashpoint | SW846-1010 | °F | >140 | NA | NA | NA | >200 | NA | NA | >200 | >200 | >200 | NA | >200 | NA | | Assenic SW846-60108 mg/L 5.0 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.50 <0.50 <0.50 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | Corrosivity (pH) | SW846-9040B | pH SUs | 2-12.5 | 8.5 | 9.2 | 9 | 9 | 8.1 | 8.9 | 7.5 | 7.5 | 10 | 7.5 | 9 | 7.6 | | Barium | | | | | | | | | | | | | | | | | | Cadmium | Arsenic | SW846-6010B | mg/L | 5.0 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.50 | < 0.50 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | Chromism | Barium | SW846-6010B | mg/L | 100.0 | 1.16 | 0.281 | 0.299 | 5.24 | 0.402 | 0.195 | < 0.50 | < 0.50 | 0.893 | 0.796 | 0.163 | 0.111 | | Land | Cadmium | SW846-6010B | mg/L | 1.0 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.50 | < 0.50 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | Mercury SW846-7470A mg/L 0.2 0.0050 | Chromium | SW846-6010B | mg/L | | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | < 0.50 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | Selenium SW46-6010B mg/L 1.0
<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | Lead | SW846-6010B | mg/L | | < 0.10 | < 0.10 | | | | | < 0.50 | < 0.50 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | Silver SW846-6010B mg/L 5.0 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.50 <0.50 <0.50 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | Mercury | SW846-7470A | mg/L | | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | | | | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | | Renzene SW846-8260B mg/L 0.5 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | Selenium | SW846-6010B | mg/L | | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | < 0.50 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | Semzene SW846-8260B mg/L 0.5 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | Silver | SW846-6010B | mg/L | 5.0 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.50 | < 0.50 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | | Carbon tetrachloride SW846-8260B mg/L 0.5 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 | TCLP VOCs | | | • | • | • | | | | | | | | | • | • | | Chlorobenzene SW846-8260B mg/L 100.0 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | | | mg/L | | | | | | | | | | | | | | | Chloroform SW846-8260B mg/L 6.0 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10
<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.1 | Carbon tetrachloride | SW846-8260B | mg/L | 0.5 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Chlorobenzene | SW846-8260B | mg/L | 100.0 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Chloroform | SW846-8260B | mg/L | 6.0 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | Methyl kethone (2-butanone) SW846-8260B mg/L 200.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 | 1,2-Dichloroethane | SW846-8260B | mg/L | 0.5 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | Tetrachloroethylene SW846-8260B mg/L 0.7 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <100 <100 <0.12 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | 1,1-Dichloroethene | SW846-8260B | mg/L | 0.7 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Methyl ethyl ketone (2-butanone) | SW846-8260B | mg/L | 200.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1000 | <1000 | <1.2 | <1.0 | <10 | <1.0 | | Vinyl chloride SW846-8260B mg/L 0.2 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | Tetrachloroethylene | SW846-8260B | mg/L | 0.7 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | TCLP SVOCs 1,4 Dichlorobenzene SW846-8270C mg/L 7.5 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0 | Trichloroethylene | SW846-8260B | mg/L | 0.5 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | 1,4 Dichlorobenzene SW846-8270C mg/L 7.5 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 | Vinyl chloride | SW846-8260B | mg/L | 0.2 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | < 0.10 | <100 | <100 | < 0.12 | < 0.10 | <1.0 | < 0.10 | | 2,4-Dinitrotluene SW846-8270C mg/L 0.1 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 | TCLP SVOCs | | | • | • | • | • | | | | | | | | • | • | | Hexachlorobenzene SW846-8270C mg/L 0.1 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050
<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 | 1,4 Dichlorobenzene | SW846-8270C | mg/L | 7.5 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | | | < 0.050 | < 0.050 | < 0.30 | < 0.15 | | Hexachlorobutadiene SW846-8270C mg/L 0.5 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 | | | mg/L | 0.1 | | | | | | | | | | | | | | Hexachloroethane SW846-8270C mg/L 3.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 | Hexachlorobenzene | | mg/L | | | | | | | | | | | | | | | Nitrobenzene SW846-8270C mg/L 2.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 < | | | | | | | | | | | | | | | | | | Pentachlorophenol SW846-8270C mg/L 100.0 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0. | | | mg/L | | | | | | | | | | | | | | | Pyridine SW846-8270C mg/L 5.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.05 | | | | | | | | | | | | | | | | | | 2,4,5-Trichlorophenol SW846-8270C mg/L 400.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 | | | mg/L | | | | | | | | | | | | | | | | <u></u> | | mg/L | | | | | | | | | | | | | | | 2,4,6-Trichlorophenol SW846-8270C mg/L 2.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <5.5 <3.5 <0.050 <0.050 <0.15 | | | | | | | | | | | | | | | | | | | 2,4,6-Trichlorophenol | SW846-8270C | mg/L | 2.0 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | <5.5 | <3.5 | < 0.050 | < 0.050 | < 0.30 | < 0.15 | #### Notes Bold results were detected above the laboratory reporting limits. $^{\circ}F$ = Degree Fahrenheit SU = Standard unit ID = Identification SVOC = Semivolatile organic compound mg/L = Milligram per liter TCLP = Toxicity Characteristic Leaching Procedure mm/sec = Millimeter per second VOC = Volatile organic compound NA = Not applicable